TPTP Problem File: SEU862^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU862^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Set Theory (Finite sets)
% Problem : TPS problem from FINITE-FINITE1-EQUIV
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0839 [Bro09]
% Status : Unknown
% Rating : 1.00 v6.2.0
% Syntax : Number of formulae : 10 ( 4 unt; 5 typ; 4 def)
% Number of atoms : 17 ( 6 equ; 0 cnn)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 30 ( 2 ~; 1 |; 5 &; 17 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 30 ( 30 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 16 ( 8 ^; 5 !; 3 ?; 16 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(cA_type,type,
cA: $i > $o ).
thf(cFINITE_type,type,
cFINITE: ( $i > $o ) > $o ).
thf(cNAT_type,type,
cNAT: ( ( $i > $o ) > $o ) > $o ).
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(cZERO_type,type,
cZERO: ( $i > $o ) > $o ).
thf(cZERO_def,definition,
( cZERO
= ( ^ [Xp: $i > $o] :
~ ? [Xx: $i] : ( Xp @ Xx ) ) ) ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(cNAT_def,definition,
( cNAT
= ( ^ [Xn: ( $i > $o ) > $o] :
! [Xp: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp @ cZERO )
& ! [Xx: ( $i > $o ) > $o] :
( ( Xp @ Xx )
=> ( Xp @ ( cSUCC @ Xx ) ) ) )
=> ( Xp @ Xn ) ) ) ) ).
thf(cFINITE_def,definition,
( cFINITE
= ( ^ [Xp: $i > $o] :
? [Xn: ( $i > $o ) > $o] :
( ( cNAT @ Xn )
& ( Xn @ Xp ) ) ) ) ).
thf(cTHM538_pme,conjecture,
( ( cFINITE @ cA )
=> ! [Xw: ( $i > $o ) > $o] :
( ( ( Xw
@ ^ [Xx: $i] : $false )
& ! [Xr: $i > $o,Xx: $i] :
( ( Xw @ Xr )
=> ( Xw
@ ^ [Xt: $i] :
( ( Xr @ Xt )
| ( Xt = Xx ) ) ) ) )
=> ( Xw @ cA ) ) ) ).
%------------------------------------------------------------------------------