TPTP Problem File: SEU861^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU861^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Finite sets)
% Problem : TPS problem THM531E
% Version : Especial.
% English : Subset of a finite set is finite.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0532 [Bro09]
% : THM531E [TPS]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.23 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 6 ( 2 equ; 0 cnn)
% Maximal formula atoms : 6 ( 6 avg)
% Number of connectives : 35 ( 2 ~; 2 |; 5 &; 16 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 15 ( 0 ^; 13 !; 2 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cB,type,
cB: a > $o ).
thf(cC,type,
cC: a > $o ).
thf(cTHM531E_pme,conjecture,
( ( ! [P: ( a > $o ) > $o] :
( ( ! [E: a > $o] :
( ~ ? [Xt: a] : ( E @ Xt )
=> ( P @ E ) )
& ! [Y: a > $o,Xx: a,Z: a > $o] :
( ( ( P @ Y )
& ! [Xx_27: a] :
( ( Z @ Xx_27 )
=> ( ( Y @ Xx_27 )
| ( Xx_27 = Xx ) ) ) )
=> ( P @ Z ) ) )
=> ( P @ cC ) )
& ! [Xx: a] :
( ( cB @ Xx )
=> ( cC @ Xx ) ) )
=> ! [P: ( a > $o ) > $o] :
( ( ! [E: a > $o] :
( ~ ? [Xt: a] : ( E @ Xt )
=> ( P @ E ) )
& ! [Y: a > $o,Xx: a,Z: a > $o] :
( ( ( P @ Y )
& ! [Xx_28: a] :
( ( Z @ Xx_28 )
=> ( ( Y @ Xx_28 )
| ( Xx_28 = Xx ) ) ) )
=> ( P @ Z ) ) )
=> ( P @ cB ) ) ) ).
%------------------------------------------------------------------------------