TPTP Problem File: SEU859^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU859^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Finite sets)
% Problem : TPS problem THM164
% Version : Especial.
% English : Direct consequence of the definition of FINITE1.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0333 [Bro09]
% : THM164 [TPS]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.15 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 5 ( 3 equ; 0 cnn)
% Maximal formula atoms : 5 ( 5 avg)
% Number of connectives : 21 ( 0 ~; 3 |; 2 &; 11 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 14 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 0 usr; 1 con; 0-2 aty)
% Number of variables : 13 ( 5 ^; 8 !; 0 ?; 13 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM164_pme,conjecture,
! [Xr: a > $o,Xx: a] :
( ! [Xw: ( a > $o ) > $o] :
( ( ( Xw
@ ^ [Xx0: a] : $false )
& ! [Xr0: a > $o,Xx0: a] :
( ( Xw @ Xr0 )
=> ( Xw
@ ^ [Xt: a] :
( ( Xr0 @ Xt )
| ( Xt = Xx0 ) ) ) ) )
=> ( Xw @ Xr ) )
=> ! [Xw: ( a > $o ) > $o] :
( ( ( Xw
@ ^ [Xx0: a] : $false )
& ! [Xr0: a > $o,Xx0: a] :
( ( Xw @ Xr0 )
=> ( Xw
@ ^ [Xt: a] :
( ( Xr0 @ Xt )
| ( Xt = Xx0 ) ) ) ) )
=> ( Xw
@ ^ [Xt: a] :
( ( Xr @ Xt )
| ( Xt = Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------