TPTP Problem File: SEU829^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU829^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : About powersets 2
% Version : Especial.
% English :
% Refs : [BB05] Benzmueller & Brown (2005), A Structured Set of Higher
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names : Example 22d [BB05]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 7 ( 4 unt; 3 typ; 3 def)
% Number of atoms : 13 ( 5 equ; 0 cnn)
% Maximal formula atoms : 1 ( 3 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 0 &; 5 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 7 ( 6 ^; 1 !; 0 ?; 7 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(subseteq_type,type,
subseteq: ( $i > $o ) > ( $i > $o ) > $o ).
thf(subseteq,definition,
( subseteq
= ( ^ [X: $i > $o,Y: $i > $o] :
! [U: $i] :
( ( X @ U )
=> ( Y @ U ) ) ) ) ).
thf(powerset_type,type,
powerset: ( $i > $o ) > ( $i > $o ) > $o ).
thf(poserset,definition,
( powerset
= ( ^ [X: $i > $o,Y: $i > $o] : ( subseteq @ Y @ X ) ) ) ).
thf(emptyset_type,type,
emptyset: $i > $o ).
thf(emptyset,definition,
( emptyset
= ( ^ [X: $i] : $false ) ) ).
thf(conj,conjecture,
( ( powerset @ emptyset )
= ( ^ [X: $i > $o] : ( X = emptyset ) ) ) ).
%------------------------------------------------------------------------------