TPTP Problem File: SEU825^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU825^3 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : setextAx and powersetAx and notinemptyset are consistent
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2008), Email to G. Sutcliffe
% Source : [Bro09]
% Names : ZFC326gc [Bro08]
% Status : CounterSatisfiable
% Rating : 1.00 v3.7.0
% Syntax : Number of formulae : 10 ( 3 unt; 6 typ; 3 def)
% Number of atoms : 17 ( 4 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 21 ( 1 ~; 0 |; 0 &; 13 @)
% ( 2 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 7 !; 0 ?; 7 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : Originally used to expose a bug in LEO-II.
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(setextAx_type,type,
setextAx: $o ).
thf(setextAx,definition,
( setextAx
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
<=> ( in @ Xx @ B ) )
=> ( A = B ) ) ) ) ).
thf(emptyset_type,type,
emptyset: $i ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(powersetAx_type,type,
powersetAx: $o ).
thf(powersetAx,definition,
( powersetAx
= ( ! [A: $i,B: $i] :
( ( in @ B @ ( powerset @ A ) )
<=> ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(notinemptyset_type,type,
notinemptyset: $o ).
thf(notinemptyset,definition,
( notinemptyset
= ( ! [Xx: $i] :
~ ( in @ Xx @ emptyset ) ) ) ).
thf(setext,conjecture,
( setextAx
=> ( powersetAx
=> ( notinemptyset
=> $false ) ) ) ).
%------------------------------------------------------------------------------