TPTP Problem File: SEU822^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU822^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordinals
% Version : Especial > Reduced > Especial.
% English : (! X:i.ordinal X -> ~(in X X))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC324l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 13 ( 4 unt; 8 typ; 4 def)
% Number of atoms : 36 ( 6 equ; 0 cnn)
% Maximal formula atoms : 3 ( 7 avg)
% Number of connectives : 71 ( 3 ~; 3 |; 6 &; 45 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 1 con; 0-2 aty)
% Number of variables : 15 ( 3 ^; 11 !; 1 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=519
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(nonempty_type,type,
nonempty: $i > $o ).
thf(transitiveset_type,type,
transitiveset: $i > $o ).
thf(stricttotalorderedByIn_type,type,
stricttotalorderedByIn: $i > $o ).
thf(stricttotalorderedByIn,definition,
( stricttotalorderedByIn
= ( ^ [A: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [X: $i] :
( ( in @ X @ A )
=> ! [Y: $i] :
( ( in @ Y @ A )
=> ( ( ( in @ Xx @ X )
& ( in @ X @ Y ) )
=> ( in @ Xx @ Y ) ) ) ) )
& ! [X: $i] :
( ( in @ X @ A )
=> ! [Y: $i] :
( ( in @ Y @ A )
=> ( ( X = Y )
| ( in @ X @ Y )
| ( in @ Y @ X ) ) ) )
& ! [X: $i] :
( ( in @ X @ A )
=> ~ ( in @ X @ X ) ) ) ) ) ).
thf(wellorderedByIn_type,type,
wellorderedByIn: $i > $o ).
thf(wellorderedByIn,definition,
( wellorderedByIn
= ( ^ [A: $i] :
( ( stricttotalorderedByIn @ A )
& ! [X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ( ( nonempty @ X )
=> ? [Xx: $i] :
( ( in @ Xx @ X )
& ! [Y: $i] :
( ( in @ Y @ X )
=> ( ( Xx = Y )
| ( in @ Xx @ Y ) ) ) ) ) ) ) ) ) ).
thf(ordinal_type,type,
ordinal: $i > $o ).
thf(ordinal,definition,
( ordinal
= ( ^ [Xx: $i] :
( ( transitiveset @ Xx )
& ( wellorderedByIn @ Xx ) ) ) ) ).
thf(ordinalIrrefl_type,type,
ordinalIrrefl: $o ).
thf(ordinalIrrefl,definition,
( ordinalIrrefl
= ( ! [X: $i] :
( ( ordinal @ X )
=> ! [A: $i] :
( ( in @ A @ X )
=> ~ ( in @ A @ A ) ) ) ) ) ).
thf(ordinalIrrefl2,conjecture,
( ordinalIrrefl
=> ! [X: $i] :
( ( ordinal @ X )
=> ~ ( in @ X @ X ) ) ) ).
%------------------------------------------------------------------------------