TPTP Problem File: SEU820^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU820^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordinals
% Version : Especial > Reduced > Especial.
% English : ordinal emptyset
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC322l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.1.0, 0.20 v4.1.0, 0.00 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 21 ( 8 unt; 12 typ; 8 def)
% Number of atoms : 50 ( 12 equ; 0 cnn)
% Maximal formula atoms : 4 ( 5 avg)
% Number of connectives : 80 ( 2 ~; 3 |; 6 &; 52 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 13 ( 12 usr; 4 con; 0-2 aty)
% Number of variables : 20 ( 5 ^; 14 !; 1 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=517
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(nonempty_type,type,
nonempty: $i > $o ).
thf(nonempty,definition,
( nonempty
= ( ^ [Xx: $i] : ( Xx != emptyset ) ) ) ).
thf(vacuousDall_type,type,
vacuousDall: $o ).
thf(vacuousDall,definition,
( vacuousDall
= ( ! [Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ emptyset )
=> ( Xphi @ Xx ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetemptysetimpeq_type,type,
subsetemptysetimpeq: $o ).
thf(subsetemptysetimpeq,definition,
( subsetemptysetimpeq
= ( ! [A: $i] :
( ( subset @ A @ emptyset )
=> ( A = emptyset ) ) ) ) ).
thf(powersetE1_type,type,
powersetE1: $o ).
thf(powersetE1,definition,
( powersetE1
= ( ! [A: $i,B: $i] :
( ( in @ B @ ( powerset @ A ) )
=> ( subset @ B @ A ) ) ) ) ).
thf(transitiveset_type,type,
transitiveset: $i > $o ).
thf(transitiveset,definition,
( transitiveset
= ( ^ [A: $i] :
! [X: $i] :
( ( in @ X @ A )
=> ( subset @ X @ A ) ) ) ) ).
thf(stricttotalorderedByIn_type,type,
stricttotalorderedByIn: $i > $o ).
thf(stricttotalorderedByIn,definition,
( stricttotalorderedByIn
= ( ^ [A: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [X: $i] :
( ( in @ X @ A )
=> ! [Y: $i] :
( ( in @ Y @ A )
=> ( ( ( in @ Xx @ X )
& ( in @ X @ Y ) )
=> ( in @ Xx @ Y ) ) ) ) )
& ! [X: $i] :
( ( in @ X @ A )
=> ! [Y: $i] :
( ( in @ Y @ A )
=> ( ( X = Y )
| ( in @ X @ Y )
| ( in @ Y @ X ) ) ) )
& ! [X: $i] :
( ( in @ X @ A )
=> ~ ( in @ X @ X ) ) ) ) ) ).
thf(wellorderedByIn_type,type,
wellorderedByIn: $i > $o ).
thf(wellorderedByIn,definition,
( wellorderedByIn
= ( ^ [A: $i] :
( ( stricttotalorderedByIn @ A )
& ! [X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ( ( nonempty @ X )
=> ? [Xx: $i] :
( ( in @ Xx @ X )
& ! [Y: $i] :
( ( in @ Y @ X )
=> ( ( Xx = Y )
| ( in @ Xx @ Y ) ) ) ) ) ) ) ) ) ).
thf(ordinal_type,type,
ordinal: $i > $o ).
thf(ordinal,definition,
( ordinal
= ( ^ [Xx: $i] :
( ( transitiveset @ Xx )
& ( wellorderedByIn @ Xx ) ) ) ) ).
thf(emptysetOrdinal,conjecture,
( vacuousDall
=> ( subsetemptysetimpeq
=> ( powersetE1
=> ( ordinal @ emptyset ) ) ) ) ).
%------------------------------------------------------------------------------