TPTP Problem File: SEU818^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU818^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordinals
% Version : Especial > Reduced > Especial.
% English : (! X:i.ordinal X -> (! A:i.in A X -> subset A X))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC320l [Bro08]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 19 ( 7 unt; 11 typ; 7 def)
% Number of atoms : 51 ( 10 equ; 0 cnn)
% Maximal formula atoms : 5 ( 6 avg)
% Number of connectives : 90 ( 2 ~; 3 |; 6 &; 59 @)
% ( 0 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 3 con; 0-2 aty)
% Number of variables : 23 ( 5 ^; 17 !; 1 ?; 23 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=514
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(nonempty_type,type,
nonempty: $i > $o ).
thf(nonempty,definition,
( nonempty
= ( ^ [Xx: $i] : ( Xx != emptyset ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(transitiveset_type,type,
transitiveset: $i > $o ).
thf(transitiveset,definition,
( transitiveset
= ( ^ [A: $i] :
! [X: $i] :
( ( in @ X @ A )
=> ( subset @ X @ A ) ) ) ) ).
thf(stricttotalorderedByIn_type,type,
stricttotalorderedByIn: $i > $o ).
thf(stricttotalorderedByIn,definition,
( stricttotalorderedByIn
= ( ^ [A: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [X: $i] :
( ( in @ X @ A )
=> ! [Y: $i] :
( ( in @ Y @ A )
=> ( ( ( in @ Xx @ X )
& ( in @ X @ Y ) )
=> ( in @ Xx @ Y ) ) ) ) )
& ! [X: $i] :
( ( in @ X @ A )
=> ! [Y: $i] :
( ( in @ Y @ A )
=> ( ( X = Y )
| ( in @ X @ Y )
| ( in @ Y @ X ) ) ) )
& ! [X: $i] :
( ( in @ X @ A )
=> ~ ( in @ X @ X ) ) ) ) ) ).
thf(wellorderedByIn_type,type,
wellorderedByIn: $i > $o ).
thf(wellorderedByIn,definition,
( wellorderedByIn
= ( ^ [A: $i] :
( ( stricttotalorderedByIn @ A )
& ! [X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ( ( nonempty @ X )
=> ? [Xx: $i] :
( ( in @ Xx @ X )
& ! [Y: $i] :
( ( in @ Y @ X )
=> ( ( Xx = Y )
| ( in @ Xx @ Y ) ) ) ) ) ) ) ) ) ).
thf(ordinal_type,type,
ordinal: $i > $o ).
thf(ordinal,definition,
( ordinal
= ( ^ [Xx: $i] :
( ( transitiveset @ Xx )
& ( wellorderedByIn @ Xx ) ) ) ) ).
thf(ordinalTransSet_type,type,
ordinalTransSet: $o ).
thf(ordinalTransSet,definition,
( ordinalTransSet
= ( ! [X: $i] :
( ( ordinal @ X )
=> ! [Xx: $i,A: $i] :
( ( in @ A @ X )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ X ) ) ) ) ) ) ).
thf(ordinalTransSet1,conjecture,
( subsetI1
=> ( ordinalTransSet
=> ! [X: $i] :
( ( ordinal @ X )
=> ! [A: $i] :
( ( in @ A @ X )
=> ( subset @ A @ X ) ) ) ) ) ).
%------------------------------------------------------------------------------