TPTP Problem File: SEU815^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU815^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Transitive Sets
% Version : Especial > Reduced > Especial.
% English : (! X:i.(! x:i.in x X -> transitiveset x) ->
% transitiveset (setunion X))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC317l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.60 v5.3.0, 0.80 v5.0.0, 0.60 v4.1.0, 0.67 v4.0.1, 1.00 v3.7.0
% Syntax : Number of formulae : 14 ( 5 unt; 8 typ; 5 def)
% Number of atoms : 32 ( 5 equ; 0 cnn)
% Maximal formula atoms : 7 ( 5 avg)
% Number of connectives : 54 ( 0 ~; 0 |; 0 &; 36 @)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 17 ( 1 ^; 16 !; 0 ?; 17 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=503
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(setunionI_type,type,
setunionI: $o ).
thf(setunionI,definition,
( setunionI
= ( ! [A: $i,Xx: $i,B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> ( in @ Xx @ ( setunion @ A ) ) ) ) ) ) ).
thf(setunionE_type,type,
setunionE: $o ).
thf(setunionE,definition,
( setunionE
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
=> ! [Xphi: $o] :
( ! [B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> Xphi ) )
=> Xphi ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(transitiveset_type,type,
transitiveset: $i > $o ).
thf(transitiveset,definition,
( transitiveset
= ( ^ [A: $i] :
! [X: $i] :
( ( in @ X @ A )
=> ( subset @ X @ A ) ) ) ) ).
thf(transitivesetOp2_type,type,
transitivesetOp2: $o ).
thf(transitivesetOp2,definition,
( transitivesetOp2
= ( ! [X: $i] :
( ( transitiveset @ X )
=> ! [A: $i,Xx: $i] :
( ( in @ A @ X )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ X ) ) ) ) ) ) ).
thf(setunionTransitive,conjecture,
( setunionI
=> ( setunionE
=> ( subsetI1
=> ( transitivesetOp2
=> ! [X: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ X )
=> ( transitiveset @ Xx ) )
=> ( transitiveset @ ( setunion @ X ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------