TPTP Problem File: SEU814^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU814^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Transitive Sets
% Version : Especial > Reduced > Especial.
% English : (! X:i.transitiveset X -> (! A:i.! x:i.in A X -> in x A ->
% in x X))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC316l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 9 ( 3 unt; 5 typ; 3 def)
% Number of atoms : 20 ( 3 equ; 0 cnn)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 32 ( 0 ~; 0 |; 0 &; 22 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 10 ( 1 ^; 9 !; 0 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=502
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(transitiveset_type,type,
transitiveset: $i > $o ).
thf(transitiveset,definition,
( transitiveset
= ( ^ [A: $i] :
! [X: $i] :
( ( in @ X @ A )
=> ( subset @ X @ A ) ) ) ) ).
thf(transitivesetOp1_type,type,
transitivesetOp1: $o ).
thf(transitivesetOp1,definition,
( transitivesetOp1
= ( ! [X: $i] :
( ( transitiveset @ X )
=> ! [A: $i] :
( ( in @ A @ X )
=> ( subset @ A @ X ) ) ) ) ) ).
thf(transitivesetOp2,conjecture,
( subsetE
=> ( transitivesetOp1
=> ! [X: $i] :
( ( transitiveset @ X )
=> ! [A: $i,Xx: $i] :
( ( in @ A @ X )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ X ) ) ) ) ) ) ).
%------------------------------------------------------------------------------