TPTP Problem File: SEU813^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU813^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Transitive Sets
% Version : Especial > Reduced > Especial.
% English : (! X:i.transitiveset X -> (! Y:i.transitiveset Y ->
% transitiveset (binintersect X Y)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC315l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 14 ( 5 unt; 8 typ; 5 def)
% Number of atoms : 29 ( 5 equ; 0 cnn)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 47 ( 0 ~; 0 |; 0 &; 34 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 15 ( 1 ^; 14 !; 0 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=501
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersectSubset5_type,type,
binintersectSubset5: $o ).
thf(binintersectSubset5,definition,
( binintersectSubset5
= ( ! [A: $i,B: $i,C: $i] :
( ( subset @ C @ A )
=> ( ( subset @ C @ B )
=> ( subset @ C @ ( binintersect @ A @ B ) ) ) ) ) ) ).
thf(binintersectEL_type,type,
binintersectEL: $o ).
thf(binintersectEL,definition,
( binintersectEL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(binintersectER_type,type,
binintersectER: $o ).
thf(binintersectER,definition,
( binintersectER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ B ) ) ) ) ).
thf(transitiveset_type,type,
transitiveset: $i > $o ).
thf(transitiveset,definition,
( transitiveset
= ( ^ [A: $i] :
! [X: $i] :
( ( in @ X @ A )
=> ( subset @ X @ A ) ) ) ) ).
thf(transitivesetOp1_type,type,
transitivesetOp1: $o ).
thf(transitivesetOp1,definition,
( transitivesetOp1
= ( ! [X: $i] :
( ( transitiveset @ X )
=> ! [A: $i] :
( ( in @ A @ X )
=> ( subset @ A @ X ) ) ) ) ) ).
thf(binintTransitive,conjecture,
( binintersectSubset5
=> ( binintersectEL
=> ( binintersectER
=> ( transitivesetOp1
=> ! [X: $i] :
( ( transitiveset @ X )
=> ! [Y: $i] :
( ( transitiveset @ Y )
=> ( transitiveset @ ( binintersect @ X @ Y ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------