TPTP Problem File: SEU806^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU806^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : The Foundation Axiom
% Version : Especial > Reduced > Especial.
% English : (! A:i.~(in A A))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC308l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 12 ( 4 unt; 7 typ; 4 def)
% Number of atoms : 24 ( 7 equ; 0 cnn)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 35 ( 2 ~; 0 |; 2 &; 22 @)
% ( 1 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 13 ( 0 ^; 10 !; 3 ?; 13 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=435
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(foundationAx_type,type,
foundationAx: $o ).
thf(foundationAx,definition,
( foundationAx
= ( ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ? [B: $i] :
( ( in @ B @ A )
& ~ ? [Xx: $i] :
( ( in @ Xx @ B )
& ( in @ Xx @ A ) ) ) ) ) ) ).
thf(setadjoinIL_type,type,
setadjoinIL: $o ).
thf(setadjoinIL,definition,
( setadjoinIL
= ( ! [Xx: $i,Xy: $i] : ( in @ Xx @ ( setadjoin @ Xx @ Xy ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(in__Cong_type,type,
in__Cong: $o ).
thf(in__Cong,definition,
( in__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
<=> ( in @ Xy @ B ) ) ) ) ) ) ).
thf(notinself,conjecture,
( foundationAx
=> ( setadjoinIL
=> ( uniqinunit
=> ( in__Cong
=> ! [A: $i] :
~ ( in @ A @ A ) ) ) ) ) ).
%------------------------------------------------------------------------------