TPTP Problem File: SEU805^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU805^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : The Foundation Axiom
% Version : Especial > Reduced > Especial.
% English : (! A:i.nonempty A -> (? X:i.in X A & binintersect X A = emptyset))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC307l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.30 v8.2.0, 0.23 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 12 ( 4 unt; 7 typ; 4 def)
% Number of atoms : 24 ( 7 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 36 ( 3 ~; 0 |; 4 &; 22 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 12 ( 1 ^; 5 !; 6 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=429
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(foundationAx_type,type,
foundationAx: $o ).
thf(foundationAx,definition,
( foundationAx
= ( ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ? [B: $i] :
( ( in @ B @ A )
& ~ ? [Xx: $i] :
( ( in @ Xx @ B )
& ( in @ Xx @ A ) ) ) ) ) ) ).
thf(nonempty_type,type,
nonempty: $i > $o ).
thf(nonempty,definition,
( nonempty
= ( ^ [Xx: $i] : ( Xx != emptyset ) ) ) ).
thf(nonemptyE1_type,type,
nonemptyE1: $o ).
thf(nonemptyE1,definition,
( nonemptyE1
= ( ! [A: $i] :
( ( nonempty @ A )
=> ? [Xx: $i] : ( in @ Xx @ A ) ) ) ) ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(disjointsetsI1_type,type,
disjointsetsI1: $o ).
thf(disjointsetsI1,definition,
( disjointsetsI1
= ( ! [A: $i,B: $i] :
( ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( in @ Xx @ B ) )
=> ( ( binintersect @ A @ B )
= emptyset ) ) ) ) ).
thf(foundation2,conjecture,
( foundationAx
=> ( nonemptyE1
=> ( disjointsetsI1
=> ! [A: $i] :
( ( nonempty @ A )
=> ? [X: $i] :
( ( in @ X @ A )
& ( ( binintersect @ X @ A )
= emptyset ) ) ) ) ) ) ).
%------------------------------------------------------------------------------