TPTP Problem File: SEU804^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU804^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : More Functions - Surjective Functions - Surjective Cantor Theorem
% Version : Especial > Reduced > Especial.
% English : (! A:i.! f:i.in f (funcSet A (powerset A)) ->
% ~(surjective A (powerset A) f))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC306l [Bro08]
% Status : Theorem
% Rating : 1.00 v3.7.0
% Syntax : Number of formulae : 16 ( 5 unt; 10 typ; 5 def)
% Number of atoms : 27 ( 6 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 59 ( 1 ~; 0 |; 1 &; 45 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 18 ( 18 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 4 con; 0-4 aty)
% Number of variables : 22 ( 6 ^; 15 !; 1 ?; 22 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=487
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(dsetconstrEL_type,type,
dsetconstrEL: $o ).
thf(dsetconstrEL,definition,
( dsetconstrEL
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(powersetI_type,type,
powersetI: $o ).
thf(powersetI,definition,
( powersetI
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( in @ B @ ( powerset @ A ) ) ) ) ) ).
thf(funcSet_type,type,
funcSet: $i > $i > $i ).
thf(ap_type,type,
ap: $i > $i > $i > $i > $i ).
thf(surjective_type,type,
surjective: $i > $i > $i > $o ).
thf(surjective,definition,
( surjective
= ( ^ [A: $i,B: $i,Xf: $i] :
! [Xx: $i] :
( ( in @ Xx @ B )
=> ? [Xy: $i] :
( ( in @ Xy @ A )
& ( ( ap @ A @ B @ Xf @ Xy )
= Xx ) ) ) ) ) ).
thf(surjCantorThm,conjecture,
( dsetconstrI
=> ( dsetconstrEL
=> ( dsetconstrER
=> ( powersetI
=> ! [A: $i,Xf: $i] :
( ( in @ Xf @ ( funcSet @ A @ ( powerset @ A ) ) )
=> ~ ( surjective @ A @ ( powerset @ A ) @ Xf ) ) ) ) ) ) ).
%------------------------------------------------------------------------------