TPTP Problem File: SEU789^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU789^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set - Second Wizard of Oz Examples
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> R = breln1invset A (breln1invset A R))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC291l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.60 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 16 ( 5 unt; 10 typ; 5 def)
% Number of atoms : 39 ( 7 equ; 0 cnn)
% Maximal formula atoms : 7 ( 6 avg)
% Number of connectives : 89 ( 0 ~; 0 |; 0 &; 66 @)
% ( 0 <=>; 23 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 5 con; 0-2 aty)
% Number of variables : 19 ( 0 ^; 19 !; 0 ?; 19 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=354
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(subbreln1_type,type,
subbreln1: $o ).
thf(subbreln1,definition,
( subbreln1
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( subset @ R @ S ) ) ) ) ) ) ).
thf(breln1invset_type,type,
breln1invset: $i > $i > $i ).
thf(breln1invprop_type,type,
breln1invprop: $o ).
thf(breln1invprop,definition,
( breln1invprop
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ( breln1 @ A @ ( breln1invset @ A @ R ) ) ) ) ) ).
thf(breln1invI_type,type,
breln1invI: $o ).
thf(breln1invI,definition,
( breln1invI
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xy @ Xx ) @ ( breln1invset @ A @ R ) ) ) ) ) ) ) ) ).
thf(breln1invE_type,type,
breln1invE: $o ).
thf(breln1invE,definition,
( breln1invE
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xy @ Xx ) @ ( breln1invset @ A @ R ) )
=> ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ) ).
thf(woz2Ex,conjecture,
( setextsub
=> ( subbreln1
=> ( breln1invprop
=> ( breln1invI
=> ( breln1invE
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ( R
= ( breln1invset @ A @ ( breln1invset @ A @ R ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------