TPTP Problem File: SEU787^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU787^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! S:i.breln1 A S -> (! x:i.in x A ->
% (! y:i.in y A -> in (kpair x y) (binunion R S) ->
% (! phi:o.(in (kpair x y) R -> phi) ->
% (in (kpair x y) S -> phi) -> phi)))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC289l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 7 ( 1 unt; 5 typ; 1 def)
% Number of atoms : 17 ( 1 equ; 0 cnn)
% Maximal formula atoms : 8 ( 8 avg)
% Number of connectives : 60 ( 0 ~; 1 |; 0 &; 44 @)
% ( 0 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 11 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 11 ( 0 ^; 11 !; 0 ?; 11 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=352
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(breln1unionE_type,type,
breln1unionE: $o ).
thf(breln1unionE,definition,
( breln1unionE
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
| ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) ) ) ) ) ) ) ).
thf(breln1unionEcases,conjecture,
( breln1unionE
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) )
=> ! [Xphi: $o] :
( ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> Xphi )
=> ( ( ( in @ ( kpair @ Xx @ Xy ) @ S )
=> Xphi )
=> Xphi ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------