TPTP Problem File: SEU785^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU785^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! S:i.breln1 A S -> (! x:i.in x A ->
% (! y:i.in y A -> in (kpair x y) R | in (kpair x y) S ->
% in (kpair x y) (binunion R S)))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC287l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 9 ( 2 unt; 6 typ; 2 def)
% Number of atoms : 25 ( 2 equ; 0 cnn)
% Maximal formula atoms : 9 ( 8 avg)
% Number of connectives : 76 ( 0 ~; 1 |; 0 &; 58 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 7 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 15 ( 0 ^; 15 !; 0 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=350
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(breln1unionIL_type,type,
breln1unionIL: $o ).
thf(breln1unionIL,definition,
( breln1unionIL
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) ) ) ) ) ) ) ) ) ).
thf(breln1unionIR_type,type,
breln1unionIR: $o ).
thf(breln1unionIR,definition,
( breln1unionIR
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ S )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) ) ) ) ) ) ) ) ) ).
thf(breln1unionI,conjecture,
( breln1unionIL
=> ( breln1unionIR
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( ( in @ ( kpair @ Xx @ Xy ) @ R )
| ( in @ ( kpair @ Xx @ Xy ) @ S ) )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------