TPTP Problem File: SEU782^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU782^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! S:i.breln1 A S ->
% breln1 A (binunion R S)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC284l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.20 v5.1.0, 0.40 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 15 ( 5 unt; 9 typ; 5 def)
% Number of atoms : 27 ( 5 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 49 ( 0 ~; 0 |; 0 &; 35 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 3 con; 0-3 aty)
% Number of variables : 18 ( 5 ^; 13 !; 0 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=347
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionEcases_type,type,
binunionEcases: $o ).
thf(binunionEcases,definition,
( binunionEcases
= ( ! [A: $i,B: $i,Xx: $i,Xphi: $o] :
( ( in @ Xx @ ( binunion @ A @ B ) )
=> ( ( ( in @ Xx @ A )
=> Xphi )
=> ( ( ( in @ Xx @ B )
=> Xphi )
=> Xphi ) ) ) ) ) ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(breln1,definition,
( breln1
= ( ^ [A: $i,R: $i] : ( breln @ A @ A @ R ) ) ) ).
thf(breln1unionprop,conjecture,
( subsetI1
=> ( subsetE
=> ( binunionEcases
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( breln1 @ A @ ( binunion @ R @ S ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------