TPTP Problem File: SEU780^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU780^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! S:i.breln1 A S -> (! x:i.in x A ->
% (! y:i.in y A -> in (kpair x y) (breln1compset A R S) ->
% (? z:i.in z A & (in (kpair x z) R & in (kpair z y) S))))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC282l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.36 v7.5.0, 0.14 v7.4.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v3.7.0
% Syntax : Number of formulae : 14 ( 4 unt; 9 typ; 4 def)
% Number of atoms : 22 ( 4 equ; 0 cnn)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 67 ( 0 ~; 0 |; 4 &; 56 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 23 ( 23 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 1 con; 0-3 aty)
% Number of variables : 24 ( 12 ^; 10 !; 2 ?; 24 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=346
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(dpsetconstr_type,type,
dpsetconstr: $i > $i > ( $i > $i > $o ) > $i ).
thf(dpsetconstrER_type,type,
dpsetconstrER: $o ).
thf(dpsetconstrER,definition,
( dpsetconstrER
= ( ! [A: $i,B: $i,Xphi: $i > $i > $o,Xx: $i,Xy: $i] :
( ( in @ ( kpair @ Xx @ Xy )
@ ( dpsetconstr @ A @ B
@ ^ [Xz: $i,Xu: $i] : ( Xphi @ Xz @ Xu ) ) )
=> ( Xphi @ Xx @ Xy ) ) ) ) ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(breln1,definition,
( breln1
= ( ^ [A: $i,R: $i] : ( breln @ A @ A @ R ) ) ) ).
thf(breln1compset_type,type,
breln1compset: $i > $i > $i > $i ).
thf(breln1compset,definition,
( breln1compset
= ( ^ [A: $i,R: $i,S: $i] :
( dpsetconstr @ A @ A
@ ^ [Xx: $i,Xy: $i] :
? [Xz: $i] :
( ( in @ Xz @ A )
& ( in @ ( kpair @ Xx @ Xz ) @ R )
& ( in @ ( kpair @ Xz @ Xy ) @ S ) ) ) ) ) ).
thf(breln1compE,conjecture,
( dpsetconstrER
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ ( breln1compset @ A @ R @ S ) )
=> ? [Xz: $i] :
( ( in @ Xz @ A )
& ( in @ ( kpair @ Xx @ Xz ) @ R )
& ( in @ ( kpair @ Xz @ Xy ) @ S ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------