TPTP Problem File: SEU777^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU777^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! x:i.in x A -> (! y:i.in y A ->
% in (kpair y x) (breln1invset A R) -> in (kpair x y) R)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC279l [Bro08]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.27 v7.5.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 14 ( 4 unt; 9 typ; 4 def)
% Number of atoms : 17 ( 4 equ; 0 cnn)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 47 ( 0 ~; 0 |; 0 &; 41 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 22 ( 22 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 1 con; 0-3 aty)
% Number of variables : 20 ( 11 ^; 9 !; 0 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=342
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(dpsetconstr_type,type,
dpsetconstr: $i > $i > ( $i > $i > $o ) > $i ).
thf(dpsetconstrER_type,type,
dpsetconstrER: $o ).
thf(dpsetconstrER,definition,
( dpsetconstrER
= ( ! [A: $i,B: $i,Xphi: $i > $i > $o,Xx: $i,Xy: $i] :
( ( in @ ( kpair @ Xx @ Xy )
@ ( dpsetconstr @ A @ B
@ ^ [Xz: $i,Xu: $i] : ( Xphi @ Xz @ Xu ) ) )
=> ( Xphi @ Xx @ Xy ) ) ) ) ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(breln1,definition,
( breln1
= ( ^ [A: $i,R: $i] : ( breln @ A @ A @ R ) ) ) ).
thf(breln1invset_type,type,
breln1invset: $i > $i > $i ).
thf(breln1invset,definition,
( breln1invset
= ( ^ [A: $i,R: $i] :
( dpsetconstr @ A @ A
@ ^ [Xx: $i,Xy: $i] : ( in @ ( kpair @ Xy @ Xx ) @ R ) ) ) ) ).
thf(breln1invE,conjecture,
( dpsetconstrER
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xy @ Xx ) @ ( breln1invset @ A @ R ) )
=> ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ).
%------------------------------------------------------------------------------