TPTP Problem File: SEU773^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU773^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! S:i.breln1 A S -> (! x:i.in x A ->
% (! y:i.in y A -> in (kpair x y) R -> in (kpair x y) S)) ->
% subset R S))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC275l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 23 ( 3 equ; 0 cnn)
% Maximal formula atoms : 8 ( 5 avg)
% Number of connectives : 58 ( 0 ~; 0 |; 0 &; 45 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 1 con; 0-3 aty)
% Number of variables : 16 ( 5 ^; 11 !; 0 ?; 16 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=331
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(subbreln_type,type,
subbreln: $o ).
thf(subbreln,definition,
( subbreln
= ( ! [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
=> ! [S: $i] :
( ( breln @ A @ B @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( subset @ R @ S ) ) ) ) ) ) ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(breln1,definition,
( breln1
= ( ^ [A: $i,R: $i] : ( breln @ A @ A @ R ) ) ) ).
thf(subbreln1,conjecture,
( subbreln
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( subset @ R @ S ) ) ) ) ) ).
%------------------------------------------------------------------------------