TPTP Problem File: SEU771^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU771^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:i>(i>o).breln1 A (dpsetconstr A A (^ x,y:i.phi x y)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC273l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.00 v6.2.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 10 ( 3 unt; 6 typ; 3 def)
% Number of atoms : 11 ( 3 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 23 ( 0 ~; 0 |; 0 &; 22 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 18 ( 18 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 1 con; 0-3 aty)
% Number of variables : 14 ( 9 ^; 5 !; 0 ?; 14 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=334
%------------------------------------------------------------------------------
thf(subset_type,type,
subset: $i > $i > $o ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(dpsetconstr_type,type,
dpsetconstr: $i > $i > ( $i > $i > $o ) > $i ).
thf(setOfPairsIsBReln_type,type,
setOfPairsIsBReln: $o ).
thf(setOfPairsIsBReln,definition,
( setOfPairsIsBReln
= ( ! [A: $i,B: $i,Xphi: $i > $i > $o] :
( breln @ A @ B
@ ( dpsetconstr @ A @ B
@ ^ [Xx: $i,Xy: $i] : ( Xphi @ Xx @ Xy ) ) ) ) ) ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(breln1,definition,
( breln1
= ( ^ [A: $i,R: $i] : ( breln @ A @ A @ R ) ) ) ).
thf(setOfPairsIsBReln1,conjecture,
( setOfPairsIsBReln
=> ! [A: $i,Xphi: $i > $i > $o] :
( breln1 @ A
@ ( dpsetconstr @ A @ A
@ ^ [Xx: $i,Xy: $i] : ( Xphi @ Xx @ Xy ) ) ) ) ).
%------------------------------------------------------------------------------