TPTP Problem File: SEU762^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU762^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Typed Set Theory - First Wizard of Oz Examples - WoZ1 Lemmas
% Version : Especial > Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! Y:i.in Y (powerset A) ->
% (! Z:i.in Z (powerset A) -> (! W:i.in W (powerset A) ->
% subset X Z -> subset Y W -> subset (binintersect X Y)
% (binintersect Z W)))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC264l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 13 ( 4 unt; 8 typ; 4 def)
% Number of atoms : 38 ( 4 equ; 0 cnn)
% Maximal formula atoms : 11 ( 7 avg)
% Number of connectives : 105 ( 0 ~; 0 |; 0 &; 80 @)
% ( 0 <=>; 25 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 20 ( 0 ^; 20 !; 0 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=323
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersectT_lem_type,type,
binintersectT_lem: $o ).
thf(binintersectT_lem,definition,
( binintersectT_lem
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( in @ ( binintersect @ X @ Y ) @ ( powerset @ A ) ) ) ) ) ) ).
thf(woz13rule1_type,type,
woz13rule1: $o ).
thf(woz13rule1,definition,
( woz13rule1
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Z: $i] :
( ( in @ Z @ ( powerset @ A ) )
=> ( ( subset @ X @ Z )
=> ( subset @ ( binintersect @ X @ Y ) @ Z ) ) ) ) ) ) ) ).
thf(woz13rule2_type,type,
woz13rule2: $o ).
thf(woz13rule2,definition,
( woz13rule2
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Z: $i] :
( ( in @ Z @ ( powerset @ A ) )
=> ( ( subset @ Y @ Z )
=> ( subset @ ( binintersect @ X @ Y ) @ Z ) ) ) ) ) ) ) ).
thf(woz13rule3_type,type,
woz13rule3: $o ).
thf(woz13rule3,definition,
( woz13rule3
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Z: $i] :
( ( in @ Z @ ( powerset @ A ) )
=> ( ( subset @ X @ Y )
=> ( ( subset @ X @ Z )
=> ( subset @ X @ ( binintersect @ Y @ Z ) ) ) ) ) ) ) ) ) ).
thf(woz13rule4,conjecture,
( binintersectT_lem
=> ( woz13rule1
=> ( woz13rule2
=> ( woz13rule3
=> ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Z: $i] :
( ( in @ Z @ ( powerset @ A ) )
=> ! [W: $i] :
( ( in @ W @ ( powerset @ A ) )
=> ( ( subset @ X @ Z )
=> ( ( subset @ Y @ W )
=> ( subset @ ( binintersect @ X @ Y ) @ ( binintersect @ Z @ W ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------