TPTP Problem File: SEU759^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU759^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Typed Set Theory - First Wizard of Oz Examples - WoZ1 Lemmas
% Version : Especial > Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! Y:i.in Y (powerset A) ->
% (! Z:i.in Z (powerset A) -> subset X Z ->
% subset (binintersect X Y) Z)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC261l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 22 ( 3 equ; 0 cnn)
% Maximal formula atoms : 8 ( 5 avg)
% Number of connectives : 45 ( 0 ~; 0 |; 0 &; 33 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 13 ( 0 ^; 13 !; 0 ?; 13 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=320
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersectEL_type,type,
binintersectEL: $o ).
thf(binintersectEL,definition,
( binintersectEL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(woz13rule1,conjecture,
( subsetI1
=> ( subsetE
=> ( binintersectEL
=> ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Z: $i] :
( ( in @ Z @ ( powerset @ A ) )
=> ( ( subset @ X @ Z )
=> ( subset @ ( binintersect @ X @ Y ) @ Z ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------