TPTP Problem File: SEU755^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU755^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
% Version : Especial > Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! Y:i.in Y (powerset A) ->
% (! x:i.in x A -> in x (setminus A X) -> in x (setminus A Y) ->
% in x (setminus A (binunion X Y)))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC257l [Bro08]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 26 ( 3 equ; 0 cnn)
% Maximal formula atoms : 9 ( 6 avg)
% Number of connectives : 73 ( 5 ~; 0 |; 0 &; 52 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 0 ^; 14 !; 0 ?; 14 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=316
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(setminus_type,type,
setminus: $i > $i > $i ).
thf(setminusI_type,type,
setminusI: $o ).
thf(setminusI,definition,
( setminusI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( in @ Xx @ ( setminus @ A @ B ) ) ) ) ) ) ).
thf(setminusER_type,type,
setminusER: $o ).
thf(setminusER,definition,
( setminusER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( setminus @ A @ B ) )
=> ~ ( in @ Xx @ B ) ) ) ) ).
thf(binunionTEcontra_type,type,
binunionTEcontra: $o ).
thf(binunionTEcontra,definition,
( binunionTEcontra
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ X )
=> ( ~ ( in @ Xx @ Y )
=> ~ ( in @ Xx @ ( binunion @ X @ Y ) ) ) ) ) ) ) ) ) ).
thf(demorgan2b2,conjecture,
( setminusI
=> ( setminusER
=> ( binunionTEcontra
=> ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ ( setminus @ A @ X ) )
=> ( ( in @ Xx @ ( setminus @ A @ Y ) )
=> ( in @ Xx @ ( setminus @ A @ ( binunion @ X @ Y ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------