TPTP Problem File: SEU746_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU746_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Set Theory
% Problem : Typed Set Theory - Laws for Typed Sets
% Version : Especial * Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! Y:i.in Y (powerset A) ->
% (! phi:o.! x:i.in x A -> in x (binunion X Y) ->
% (in x X -> phi) -> (in x Y -> phi) -> phi)))
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 6 ( 1 unt; 4 typ; 1 def)
% Number of atoms : 12 ( 1 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 11 ( 0 ~; 1 |; 0 &)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 8 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 5 ( 2 fml; 3 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 3 >; 2 *; 0 +; 0 <<)
% Number of predicates : 3 ( 2 usr; 1 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 8 ( 8 !; 0 ?; 8 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(in_type,type,
in: ( $i * $i ) > $o ).
tff(powerset_type,type,
powerset: $i > $i ).
tff(binunion_type,type,
binunion: ( $i * $i ) > $i ).
tff(binunionE_type,type,
binunionE: $o ).
tff(binunionE,definition,
( binunionE
= ( ! [A: $i,B: $i,Xx: $i] :
( in(Xx,binunion(A,B))
=> ( in(Xx,A)
| in(Xx,B) ) ) ) ) ).
tff(binunionTE,conjecture,
( binunionE
=> ! [A: $i,X: $i] :
( in(X,powerset(A))
=> ! [Y: $i] :
( in(Y,powerset(A))
=> ! [Xphi: $o,Xx: $i] :
( in(Xx,A)
=> ( in(Xx,binunion(X,Y))
=> ( ( in(Xx,X)
=> (Xphi) )
=> ( ( in(Xx,Y)
=> (Xphi) )
=> (Xphi) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------