TPTP Problem File: SEU728^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU728^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Typed Set Theory - Laws for Typed Sets
% Version : Especial > Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! x:i.in x A ->
% in x (setminus A (setminus A X)) -> in x X))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC230l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 2 def)
% Number of atoms : 15 ( 2 equ; 0 cnn)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 37 ( 2 ~; 0 |; 0 &; 27 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 9 !; 0 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=288
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(setminus_type,type,
setminus: $i > $i > $i ).
thf(setminusI_type,type,
setminusI: $o ).
thf(setminusI,definition,
( setminusI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( in @ Xx @ ( setminus @ A @ B ) ) ) ) ) ) ).
thf(setminusER_type,type,
setminusER: $o ).
thf(setminusER,definition,
( setminusER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( setminus @ A @ B ) )
=> ~ ( in @ Xx @ B ) ) ) ) ).
thf(doubleComplementE1,conjecture,
( setminusI
=> ( setminusER
=> ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ ( setminus @ A @ ( setminus @ A @ X ) ) )
=> ( in @ Xx @ X ) ) ) ) ) ) ).
%------------------------------------------------------------------------------