TPTP Problem File: SEU715^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU715^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Typed Set Theory - Laws for Typed Sets
% Version : Especial > Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! Y:i.in Y (powerset A) ->
% (! x:i.in x A -> in x X -> in x Y) -> (! x:i.in x A -> in x Y ->
% in x X) -> X = Y))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC217l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 23 ( 4 equ; 0 cnn)
% Maximal formula atoms : 11 ( 7 avg)
% Number of connectives : 49 ( 0 ~; 0 |; 0 &; 33 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 12 ( 0 ^; 12 !; 0 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=273
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(setext_type,type,
setext: $o ).
thf(setext,definition,
( setext
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( A = B ) ) ) ) ) ).
thf(powersetE_type,type,
powersetE: $o ).
thf(powersetE,definition,
( powersetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ B @ ( powerset @ A ) )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(setextT,conjecture,
( setext
=> ( powersetE
=> ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ X )
=> ( in @ Xx @ Y ) ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ Y )
=> ( in @ Xx @ X ) ) )
=> ( X = Y ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------