TPTP Problem File: SEU690^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU690^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Extensionality and Beta Reduction
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! R:i.breln A B R -> (! S:i.breln A B S ->
% (! x:i.in x A -> (! y:i.in y B -> in (kpair x y) R ->
% in (kpair x y) S)) -> (! x:i.in x A -> (! y:i.in y B ->
% in (kpair x y) S -> in (kpair x y) R)) -> R = S))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC192l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 30 ( 5 equ; 0 cnn)
% Maximal formula atoms : 13 ( 7 avg)
% Number of connectives : 78 ( 0 ~; 0 |; 0 &; 58 @)
% ( 0 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 2 con; 0-3 aty)
% Number of variables : 19 ( 3 ^; 16 !; 0 ?; 19 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=244
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(subbreln_type,type,
subbreln: $o ).
thf(subbreln,definition,
( subbreln
= ( ! [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
=> ! [S: $i] :
( ( breln @ A @ B @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( subset @ R @ S ) ) ) ) ) ) ).
thf(eqbreln,conjecture,
( setextsub
=> ( subbreln
=> ! [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
=> ! [S: $i] :
( ( breln @ A @ B @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ S )
=> ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) )
=> ( R = S ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------