TPTP Problem File: SEU684^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU684^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Extensionality and Beta Reduction
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! f:i.func A B f -> (! x:i.in x A ->
% in (kpair x (ap A B f x)) f))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC186l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.36 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v3.7.0
% Syntax : Number of formulae : 25 ( 8 unt; 16 typ; 8 def)
% Number of atoms : 37 ( 9 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 77 ( 0 ~; 0 |; 2 &; 65 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 30 ( 30 >; 0 *; 0 +; 0 <<)
% Number of symbols : 17 ( 16 usr; 4 con; 0-4 aty)
% Number of variables : 32 ( 18 ^; 13 !; 1 ?; 32 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=241
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(theprop_type,type,
theprop: $o ).
thf(theprop,definition,
( theprop
= ( ! [X: $i] :
( ( singleton @ X )
=> ( in @ ( setunion @ X ) @ X ) ) ) ) ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(func_type,type,
func: $i > $i > $i > $o ).
thf(func,definition,
( func
= ( ^ [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
& ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ex1 @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ).
thf(funcImageSingleton_type,type,
funcImageSingleton: $o ).
thf(funcImageSingleton,definition,
( funcImageSingleton
= ( ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( singleton
@ ( dsetconstr @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ Xf ) ) ) ) ) ) ) ).
thf(ap_type,type,
ap: $i > $i > $i > $i > $i ).
thf(ap,definition,
( ap
= ( ^ [A: $i,B: $i,Xf: $i,Xx: $i] :
( setunion
@ ( dsetconstr @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ Xf ) ) ) ) ) ).
thf(funcGraphProp1,conjecture,
( dsetconstrER
=> ( theprop
=> ( funcImageSingleton
=> ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( kpair @ Xx @ ( ap @ A @ B @ Xf @ Xx ) ) @ Xf ) ) ) ) ) ) ).
%------------------------------------------------------------------------------