TPTP Problem File: SEU682^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU682^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Extensionality and Beta Reduction
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! R:i.breln A B R -> (! phi:i>o.(! x:i.in x A ->
% (! y:i.in y B -> in (kpair x y) R -> phi (kpair x y))) ->
% (! x:i.in x R -> phi x)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC184l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 9 ( 2 unt; 6 typ; 2 def)
% Number of atoms : 16 ( 2 equ; 0 cnn)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 51 ( 0 ~; 0 |; 0 &; 38 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 1 con; 0-3 aty)
% Number of variables : 17 ( 3 ^; 14 !; 0 ?; 17 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=377
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(brelnall1_type,type,
brelnall1: $o ).
thf(brelnall1,definition,
( brelnall1
= ( ! [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
=> ! [Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( Xphi @ ( kpair @ Xx @ Xy ) ) ) ) )
=> ! [Xx: $i] :
( ( in @ Xx @ R )
=> ( Xphi @ Xx ) ) ) ) ) ) ).
thf(brelnall2,conjecture,
( brelnall1
=> ! [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
=> ! [Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( Xphi @ ( kpair @ Xx @ Xy ) ) ) ) )
=> ! [Xx: $i] :
( ( in @ Xx @ R )
=> ( Xphi @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------