TPTP Problem File: SEU672^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU672^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! f:i.func A B f -> (! x:i.in x A -> singleton
% (dsetconstr B (^ y:i.in (kpair x y) f))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC174l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v5.1.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 16 ( 4 unt; 11 typ; 4 def)
% Number of atoms : 20 ( 5 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 40 ( 0 ~; 0 |; 2 &; 35 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 24 ( 24 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 1 con; 0-3 aty)
% Number of variables : 18 ( 12 ^; 5 !; 1 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=223
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(func_type,type,
func: $i > $i > $i > $o ).
thf(func,definition,
( func
= ( ^ [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
& ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ex1 @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ).
thf(funcImageSingleton,conjecture,
! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( singleton
@ ( dsetconstr @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ Xf ) ) ) ) ) ).
%------------------------------------------------------------------------------