TPTP Problem File: SEU664^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU664^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Properties of Pairs
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! u:i.in u (cartprod A B) -> kpair (kfst u)
% (ksnd u) = u)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC166l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 12 ( 3 unt; 8 typ; 3 def)
% Number of atoms : 21 ( 7 equ; 0 cnn)
% Maximal formula atoms : 5 ( 5 avg)
% Number of connectives : 43 ( 0 ~; 0 |; 2 &; 32 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 16 ( 0 ^; 14 !; 2 ?; 16 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=218
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(cartprodmempair1_type,type,
cartprodmempair1: $o ).
thf(cartprodmempair1,definition,
( cartprodmempair1
= ( ! [A: $i,B: $i,Xu: $i] :
( ( in @ Xu @ ( cartprod @ A @ B ) )
=> ? [Xx: $i] :
( ( in @ Xx @ A )
& ? [Xy: $i] :
( ( in @ Xy @ B )
& ( Xu
= ( kpair @ Xx @ Xy ) ) ) ) ) ) ) ).
thf(kfst_type,type,
kfst: $i > $i ).
thf(ksnd_type,type,
ksnd: $i > $i ).
thf(cartprodfstpairEq_type,type,
cartprodfstpairEq: $o ).
thf(cartprodfstpairEq,definition,
( cartprodfstpairEq
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( kfst @ ( kpair @ Xx @ Xy ) )
= Xx ) ) ) ) ) ).
thf(cartprodsndpairEq_type,type,
cartprodsndpairEq: $o ).
thf(cartprodsndpairEq,definition,
( cartprodsndpairEq
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( ksnd @ ( kpair @ Xx @ Xy ) )
= Xy ) ) ) ) ) ).
thf(cartprodpairsurjEq,conjecture,
( cartprodmempair1
=> ( cartprodfstpairEq
=> ( cartprodsndpairEq
=> ! [A: $i,B: $i,Xu: $i] :
( ( in @ Xu @ ( cartprod @ A @ B ) )
=> ( ( kpair @ ( kfst @ Xu ) @ ( ksnd @ Xu ) )
= Xu ) ) ) ) ) ).
%------------------------------------------------------------------------------