TPTP Problem File: SEU654^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU654^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Properties of Pairs
% Version : Especial > Reduced > Especial.
% English : (! x:i.! y:i.! z:i.! u:i.kpair x y = kpair z u -> y = u)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC156l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 8 ( 6 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 37 ( 0 ~; 0 |; 0 &; 34 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 10 ( 2 ^; 8 !; 0 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=210
%------------------------------------------------------------------------------
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(kpair,definition,
( kpair
= ( ^ [Xx: $i,Xy: $i] : ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) ) ) ).
thf(setukpairinjR2_type,type,
setukpairinjR2: $o ).
thf(setukpairinjR2,definition,
( setukpairinjR2
= ( ! [Xx: $i,Xy: $i,Xz: $i,Xu: $i] :
( ( ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) )
= ( setadjoin @ ( setadjoin @ Xz @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xz @ ( setadjoin @ Xu @ emptyset ) ) @ emptyset ) ) )
=> ( Xy = Xu ) ) ) ) ).
thf(setukpairinjR,conjecture,
( setukpairinjR2
=> ! [Xx: $i,Xy: $i,Xz: $i,Xu: $i] :
( ( ( kpair @ Xx @ Xy )
= ( kpair @ Xz @ Xu ) )
=> ( Xy = Xu ) ) ) ).
%------------------------------------------------------------------------------