TPTP Problem File: SEU652^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU652^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Properties of Pairs
% Version : Especial > Reduced > Especial.
% English : (! x:i.! y:i.! z:i.setadjoin x (setadjoin y emptyset) =
% setadjoin z emptyset -> x = y)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC154l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.33 v5.4.0, 0.20 v5.3.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 10 ( 3 unt; 6 typ; 3 def)
% Number of atoms : 15 ( 6 equ; 0 cnn)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 25 ( 0 ~; 0 |; 0 &; 20 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 9 !; 0 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=208
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setadjoinIL_type,type,
setadjoinIL: $o ).
thf(setadjoinIL,definition,
( setadjoinIL
= ( ! [Xx: $i,Xy: $i] : ( in @ Xx @ ( setadjoin @ Xx @ Xy ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(secondinupair_type,type,
secondinupair: $o ).
thf(secondinupair,definition,
( secondinupair
= ( ! [Xx: $i,Xy: $i] : ( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(upairequniteq,conjecture,
( setadjoinIL
=> ( uniqinunit
=> ( secondinupair
=> ! [Xx: $i,Xy: $i,Xz: $i] :
( ( ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) )
= ( setadjoin @ Xz @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ) ).
%------------------------------------------------------------------------------