TPTP Problem File: SEU644^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU644^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Properties of Pairs
% Version : Especial > Reduced > Especial.
% English : (! X:i.singleton X -> in (setunion X) X)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC146l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 15 ( 6 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 20 ( 0 ~; 0 |; 1 &; 15 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 6 ( 1 ^; 4 !; 1 ?; 6 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=200
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(eqinunit_type,type,
eqinunit: $o ).
thf(eqinunit,definition,
( eqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(setunionsingleton_type,type,
setunionsingleton: $o ).
thf(setunionsingleton,definition,
( setunionsingleton
= ( ! [Xx: $i] :
( ( setunion @ ( setadjoin @ Xx @ emptyset ) )
= Xx ) ) ) ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(theprop,conjecture,
( eqinunit
=> ( setunionsingleton
=> ! [X: $i] :
( ( singleton @ X )
=> ( in @ ( setunion @ X ) @ X ) ) ) ) ).
%------------------------------------------------------------------------------