TPTP Problem File: SEU640^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU640^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Singletons
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:i>o.(! x:i.in x A -> (! y:i.in y A -> phi x ->
% phi y -> x = y)) -> (? x:i.in x A & phi x) -> ex1 A (^ x:i.phi x))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC142l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 20 ( 6 equ; 0 cnn)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 49 ( 0 ~; 0 |; 3 &; 33 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 2 con; 0-2 aty)
% Number of variables : 17 ( 6 ^; 8 !; 3 ?; 17 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=470
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(singletonprop_type,type,
singletonprop: $o ).
thf(singletonprop,definition,
( singletonprop
= ( ! [A: $i,Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) )
=> ( ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(ex1I2,conjecture,
( singletonprop
=> ! [A: $i,Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) )
=> ( ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ( ex1 @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------