TPTP Problem File: SEU636^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU636^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Singletons
% Version : Especial > Reduced > Especial.
% English : (! x:i.setunion (setadjoin x emptyset) = x)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC138l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 15 ( 5 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 22 ( 0 ~; 0 |; 0 &; 17 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 5 ( 0 ^; 5 !; 0 ?; 5 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=193
%------------------------------------------------------------------------------
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(setunionsingleton1_type,type,
setunionsingleton1: $o ).
thf(setunionsingleton1,definition,
( setunionsingleton1
= ( ! [A: $i] : ( subset @ ( setunion @ ( setadjoin @ A @ emptyset ) ) @ A ) ) ) ).
thf(setunionsingleton2_type,type,
setunionsingleton2: $o ).
thf(setunionsingleton2,definition,
( setunionsingleton2
= ( ! [A: $i] : ( subset @ A @ ( setunion @ ( setadjoin @ A @ emptyset ) ) ) ) ) ).
thf(setunionsingleton,conjecture,
( setextsub
=> ( setunionsingleton1
=> ( setunionsingleton2
=> ! [Xx: $i] :
( ( setunion @ ( setadjoin @ Xx @ emptyset ) )
= Xx ) ) ) ) ).
%------------------------------------------------------------------------------