TPTP Problem File: SEU634^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU634^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Singletons
% Version : Especial > Reduced > Especial.
% English : (! A:i.subset (setunion (setadjoin A emptyset)) A)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC136l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 12 ( 3 unt; 8 typ; 3 def)
% Number of atoms : 18 ( 4 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 30 ( 0 ~; 0 |; 1 &; 22 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 8 !; 1 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=191
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(setunionE2_type,type,
setunionE2: $o ).
thf(setunionE2,definition,
( setunionE2
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
=> ? [X: $i] :
( ( in @ X @ A )
& ( in @ Xx @ X ) ) ) ) ) ).
thf(setunionsingleton1,conjecture,
( uniqinunit
=> ( subsetI2
=> ( setunionE2
=> ! [A: $i] : ( subset @ ( setunion @ ( setadjoin @ A @ emptyset ) ) @ A ) ) ) ) ).
%------------------------------------------------------------------------------