TPTP Problem File: SEU628^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU628^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Cartesian Products
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.in x A -> (! y:i.in y B -> in (setadjoin
% (setadjoin x emptyset) (setadjoin (setadjoin x
% (setadjoin y emptyset)) emptyset)) (powerset (powerset
% (binunion A B)))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC130l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 11 ( 2 unt; 8 typ; 2 def)
% Number of atoms : 14 ( 2 equ; 0 cnn)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 51 ( 0 ~; 0 |; 0 &; 44 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 10 ( 0 ^; 10 !; 0 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=185
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(powersetI1_type,type,
powersetI1: $o ).
thf(powersetI1,definition,
( powersetI1
= ( ! [A: $i,B: $i] :
( ( subset @ B @ A )
=> ( in @ B @ ( powerset @ A ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(ubforcartprodlem1_type,type,
ubforcartprodlem1: $o ).
thf(ubforcartprodlem1,definition,
( ubforcartprodlem1
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( subset @ ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) @ ( powerset @ ( binunion @ A @ B ) ) ) ) ) ) ) ).
thf(ubforcartprodlem2,conjecture,
( powersetI1
=> ( ubforcartprodlem1
=> ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( in @ ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) @ ( powerset @ ( powerset @ ( binunion @ A @ B ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------