TPTP Problem File: SEU625^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU625^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Cartesian Products
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.in x A -> (! y:i.in y B -> subset (setadjoin x
% (setadjoin y emptyset)) (binunion A B)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC127l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.40 v6.2.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.40 v4.1.0, 0.67 v3.7.0
% Syntax : Number of formulae : 16 ( 5 unt; 10 typ; 5 def)
% Number of atoms : 29 ( 7 equ; 0 cnn)
% Maximal formula atoms : 8 ( 4 avg)
% Number of connectives : 51 ( 0 ~; 1 |; 0 &; 38 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 6 con; 0-2 aty)
% Number of variables : 17 ( 0 ^; 17 !; 0 ?; 17 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=182
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionLsub_type,type,
binunionLsub: $o ).
thf(binunionLsub,definition,
( binunionLsub
= ( ! [A: $i,B: $i] : ( subset @ A @ ( binunion @ A @ B ) ) ) ) ).
thf(binunionRsub_type,type,
binunionRsub: $o ).
thf(binunionRsub,definition,
( binunionRsub
= ( ! [A: $i,B: $i] : ( subset @ B @ ( binunion @ A @ B ) ) ) ) ).
thf(upairset2E_type,type,
upairset2E: $o ).
thf(upairset2E,definition,
( upairset2E
= ( ! [Xx: $i,Xy: $i,Xz: $i] :
( ( in @ Xz @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) )
=> ( ( Xz = Xx )
| ( Xz = Xy ) ) ) ) ) ).
thf(upairsubunion,conjecture,
( subsetI2
=> ( subsetE
=> ( binunionLsub
=> ( binunionRsub
=> ( upairset2E
=> ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( subset @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ ( binunion @ A @ B ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------