TPTP Problem File: SEU623^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU623^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Cartesian Products
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.in x A -> in (setadjoin x emptyset) (powerset
% (binunion A B)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC125l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 15 ( 4 unt; 10 typ; 4 def)
% Number of atoms : 22 ( 4 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 41 ( 0 ~; 0 |; 0 &; 32 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 5 con; 0-2 aty)
% Number of variables : 12 ( 0 ^; 12 !; 0 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=180
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(powersetsubset_type,type,
powersetsubset: $o ).
thf(powersetsubset,definition,
( powersetsubset
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( subset @ ( powerset @ A ) @ ( powerset @ B ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionLsub_type,type,
binunionLsub: $o ).
thf(binunionLsub,definition,
( binunionLsub
= ( ! [A: $i,B: $i] : ( subset @ A @ ( binunion @ A @ B ) ) ) ) ).
thf(singletoninpowerset_type,type,
singletoninpowerset: $o ).
thf(singletoninpowerset,definition,
( singletoninpowerset
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( setadjoin @ Xx @ emptyset ) @ ( powerset @ A ) ) ) ) ) ).
thf(singletoninpowunion,conjecture,
( subsetE
=> ( powersetsubset
=> ( binunionLsub
=> ( singletoninpowerset
=> ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( setadjoin @ Xx @ emptyset ) @ ( powerset @ ( binunion @ A @ B ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------