TPTP Problem File: SEU618^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU618^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Kuratowski Pairs
% Version : Especial > Reduced > Especial.
% English : (! x:i.! y:i.in y (setunion (setadjoin (setadjoin x emptyset)
% (setadjoin (setadjoin x (setadjoin y emptyset)) emptyset))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC120l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 9 ( 2 unt; 6 typ; 2 def)
% Number of atoms : 11 ( 2 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 30 ( 0 ~; 0 |; 0 &; 26 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 7 !; 0 ?; 7 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=173
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(setunionI_type,type,
setunionI: $o ).
thf(setunionI,definition,
( setunionI
= ( ! [A: $i,Xx: $i,B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> ( in @ Xx @ ( setunion @ A ) ) ) ) ) ) ).
thf(secondinupair_type,type,
secondinupair: $o ).
thf(secondinupair,definition,
( secondinupair
= ( ! [Xx: $i,Xy: $i] : ( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(setukpairIR,conjecture,
( setunionI
=> ( secondinupair
=> ! [Xx: $i,Xy: $i] : ( in @ Xy @ ( setunion @ ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) ) ) ) ) ).
%------------------------------------------------------------------------------