TPTP Problem File: SEU615^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU615^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Operations on Sets - Symmetric Difference
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.~(in x A) -> ~(in x B) -> ~(in x
% (symdiff A B)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC117l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 5 ( 1 unt; 3 typ; 1 def)
% Number of atoms : 11 ( 1 equ; 0 cnn)
% Maximal formula atoms : 4 ( 5 avg)
% Number of connectives : 35 ( 5 ~; 0 |; 0 &; 20 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 7 !; 0 ?; 7 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=493
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(symdiff_type,type,
symdiff: $i > $i > $i ).
thf(symdiffE_type,type,
symdiffE: $o ).
thf(symdiffE,definition,
( symdiffE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( symdiff @ A @ B ) )
=> ! [Xphi: $o] :
( ( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> Xphi ) )
=> ( ( ~ ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> Xphi ) )
=> Xphi ) ) ) ) ) ).
thf(symdiffIneg2,conjecture,
( symdiffE
=> ! [A: $i,B: $i,Xx: $i] :
( ~ ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ~ ( in @ Xx @ ( symdiff @ A @ B ) ) ) ) ) ).
%------------------------------------------------------------------------------