TPTP Problem File: SEU610_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU610_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Operations on Sets - Set Difference
% Version : Especial * Reduced > Especial.
% English : (! A:i.! B:i.setminus A B = emptyset -> subset A B)
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.00 v8.1.0
% Syntax : Number of formulae : 13 ( 4 unt; 8 typ; 4 def)
% Number of atoms : 25 ( 7 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 14 ( 1 ~; 0 |; 0 &)
% ( 1 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 9 ( 8 fml; 1 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 3 >; 3 *; 0 +; 0 <<)
% Number of predicates : 7 ( 6 usr; 4 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 14 ( 14 !; 0 ?; 14 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(in_type,type,
in: ( $i * $i ) > $o ).
tff(emptyset_type,type,
emptyset: $i ).
tff(emptysetE_type,type,
emptysetE: $o ).
tff(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( in(Xx,emptyset)
=> ! [Xphi: $o] : (Xphi) ) ) ) ).
tff(in__Cong_type,type,
in__Cong: $o ).
tff(in__Cong,definition,
( in__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( in(Xx,A)
<=> in(Xy,B) ) ) ) ) ) ).
tff(subset_type,type,
subset: ( $i * $i ) > $o ).
tff(subsetI2_type,type,
subsetI2: $o ).
tff(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( in(Xx,A)
=> in(Xx,B) )
=> subset(A,B) ) ) ) ).
tff(setminus_type,type,
setminus: ( $i * $i ) > $i ).
tff(setminusI_type,type,
setminusI: $o ).
tff(setminusI,definition,
( setminusI
= ( ! [A: $i,B: $i,Xx: $i] :
( in(Xx,A)
=> ( ~ in(Xx,B)
=> in(Xx,setminus(A,B)) ) ) ) ) ).
tff(setminusSubset1,conjecture,
( emptysetE
=> ( in__Cong
=> ( subsetI2
=> ( setminusI
=> ! [A: $i,B: $i] :
( ( setminus(A,B) = emptyset )
=> subset(A,B) ) ) ) ) ) ).
%------------------------------------------------------------------------------