TPTP Problem File: SEU610^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU610^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Operations on Sets - Set Difference
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.setminus A B = emptyset -> subset A B)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC112l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v5.1.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 13 ( 4 unt; 8 typ; 4 def)
% Number of atoms : 25 ( 7 equ; 0 cnn)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 38 ( 1 ~; 0 |; 0 &; 24 @)
% ( 1 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 14 ( 0 ^; 14 !; 0 ?; 14 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=465
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(emptysetE_type,type,
emptysetE: $o ).
thf(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> ! [Xphi: $o] : Xphi ) ) ) ).
thf(in__Cong_type,type,
in__Cong: $o ).
thf(in__Cong,definition,
( in__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
<=> ( in @ Xy @ B ) ) ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(setminus_type,type,
setminus: $i > $i > $i ).
thf(setminusI_type,type,
setminusI: $o ).
thf(setminusI,definition,
( setminusI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( in @ Xx @ ( setminus @ A @ B ) ) ) ) ) ) ).
thf(setminusSubset1,conjecture,
( emptysetE
=> ( in__Cong
=> ( subsetI2
=> ( setminusI
=> ! [A: $i,B: $i] :
( ( ( setminus @ A @ B )
= emptyset )
=> ( subset @ A @ B ) ) ) ) ) ) ).
%------------------------------------------------------------------------------