TPTP Problem File: SEU604^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU604^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Operations on Sets - Set Difference
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.subset A B -> setminus A B = emptyset)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC106l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 15 ( 5 unt; 9 typ; 5 def)
% Number of atoms : 29 ( 7 equ; 0 cnn)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 44 ( 1 ~; 0 |; 0 &; 30 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 6 con; 0-2 aty)
% Number of variables : 15 ( 0 ^; 15 !; 0 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=481
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(subsetemptysetimpeq_type,type,
subsetemptysetimpeq: $o ).
thf(subsetemptysetimpeq,definition,
( subsetemptysetimpeq
= ( ! [A: $i] :
( ( subset @ A @ emptyset )
=> ( A = emptyset ) ) ) ) ).
thf(setminus_type,type,
setminus: $i > $i > $i ).
thf(setminusEL_type,type,
setminusEL: $o ).
thf(setminusEL,definition,
( setminusEL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( setminus @ A @ B ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(setminusER_type,type,
setminusER: $o ).
thf(setminusER,definition,
( setminusER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( setminus @ A @ B ) )
=> ~ ( in @ Xx @ B ) ) ) ) ).
thf(setminusSubset2,conjecture,
( subsetI2
=> ( subsetE
=> ( subsetemptysetimpeq
=> ( setminusEL
=> ( setminusER
=> ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( setminus @ A @ B )
= emptyset ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------