TPTP Problem File: SEU596^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU596^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Ops on Sets - Unions and Intersections
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.~(? x:i.in x A & in x B) ->
% binintersect A B = emptyset)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC098l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.23 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 10 ( 3 unt; 6 typ; 3 def)
% Number of atoms : 18 ( 5 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 30 ( 2 ~; 0 |; 1 &; 20 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 11 ( 0 ^; 10 !; 1 ?; 11 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=387
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(emptyI_type,type,
emptyI: $o ).
thf(emptyI,definition,
( emptyI
= ( ! [A: $i] :
( ! [Xx: $i] :
~ ( in @ Xx @ A )
=> ( A = emptyset ) ) ) ) ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersectEL_type,type,
binintersectEL: $o ).
thf(binintersectEL,definition,
( binintersectEL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(binintersectER_type,type,
binintersectER: $o ).
thf(binintersectER,definition,
( binintersectER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ B ) ) ) ) ).
thf(disjointsetsI1,conjecture,
( emptyI
=> ( binintersectEL
=> ( binintersectER
=> ! [A: $i,B: $i] :
( ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( in @ Xx @ B ) )
=> ( ( binintersect @ A @ B )
= emptyset ) ) ) ) ) ).
%------------------------------------------------------------------------------