TPTP Problem File: SEU590^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU590^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Ops on Sets - Unions and Intersections
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! C:i.subset C A -> subset C B -> subset C
% (binintersect A B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC092l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 12 ( 4 unt; 7 typ; 4 def)
% Number of atoms : 23 ( 4 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 43 ( 0 ~; 0 |; 0 &; 32 @)
% ( 0 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 15 ( 3 ^; 12 !; 0 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=366
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersect,definition,
( binintersect
= ( ^ [A: $i,B: $i] :
( dsetconstr @ A
@ ^ [Xx: $i] : ( in @ Xx @ B ) ) ) ) ).
thf(binintersectI_type,type,
binintersectI: $o ).
thf(binintersectI,definition,
( binintersectI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ ( binintersect @ A @ B ) ) ) ) ) ) ).
thf(binintersectSubset5,conjecture,
( subsetI1
=> ( subsetE
=> ( binintersectI
=> ! [A: $i,B: $i,C: $i] :
( ( subset @ C @ A )
=> ( ( subset @ C @ B )
=> ( subset @ C @ ( binintersect @ A @ B ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------