TPTP Problem File: SEU588^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU588^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Ops on Sets - Unions and Intersections
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.subset B (binunion A B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC090l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 2 def)
% Number of atoms : 12 ( 2 equ; 0 cnn)
% Maximal formula atoms : 3 ( 4 avg)
% Number of connectives : 21 ( 0 ~; 0 |; 0 &; 16 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 8 ( 0 ^; 8 !; 0 ?; 8 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=164
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionIR_type,type,
binunionIR: $o ).
thf(binunionIR,definition,
( binunionIR
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ ( binunion @ A @ B ) ) ) ) ) ).
thf(binunionRsub,conjecture,
( subsetI2
=> ( binunionIR
=> ! [A: $i,B: $i] : ( subset @ B @ ( binunion @ A @ B ) ) ) ) ).
%------------------------------------------------------------------------------